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electrons in metals
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waldring 38-40, 70569 Stuttgart, Germany

Received 16 July 1996

Abstract. Generalizing the Drude conductivity and using experimental data for the complex
refractive index or for the complex dielectric function an expression is derived for the
determination of the frequency-dependent electron mass, defined as the optical mass. Values for
the optical mass are calculated for 27 metals, including in a few both the solid phase and the
liquid phase. Additionally, a new formula for the estimation of the polarizability of metals is
given and evaluated for 15 metals. Good agreement between existing published literature values
and our calculation is found for the optical mass in the zero-frequency limit as well as for the
polarizability.

1. Introduction

Although the effective mass is an important quantity in solid state physics in many aspects,
there is no stringent rule in the literature for the use of the terms ‘effective mass’ or ‘optical
mass’. Sometimes this leads to confusion, especially among non-experts in this field of
solid state physics. The well known formula

1

m∗ = 1

h̄2

∑
ij

∂2En(k)

∂ki∂kj

(1)

is used by some workers as the definition of the effective mass (see, e.g., Ashcroft and
Mermin (1976)) and by others for the optical mass (see, e.g., Brust (1970)). Both definitions
can be, of course, correct if one clearly distinguishesm∗ as a measure of the deviations of
the true band structure from the free-electron model at zero temperature or as including the
influence of phonons at higher temperatures or as incorporating the interaction with photons.
Obviously, for a clear distinction between the several possibilities it would be desirable that
m∗ be labelled accordingly or written explicitly as a function of the respective variables
such asm∗(T ) or m∗(T , ω).

For clarity, we propose the expression ‘optical mass’ for the third version and shall
use it in what follows. The ‘optical mass’ depends on the photon frequencyω and on the
temperatureT and can be determined, as we shall show below, from optical data. The
‘effective mass’ is then defined and measured in the frequency-independent case. In the
limit ω → 0 both should, of course, converge to the same value.

It should be stressed at this point that the goal of the paper is the derivation of a simple
expression for the calculation of the optical mass from tabulated data and not anab-initio
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determination of it within the framework of band-structure theory. Our approach, therefore,
is guided more by an experimental than by a theoretical point of view.

Since the optical mass is not only an interesting quantity in itself but also an important
input parameter for theoretical calculations (e.g. the optical properties (Hüttner 1994, 1995a))
or evaluations from experimental data (e.g. the intraband plasma frequency�p (Smith and
Segall 1986)), we shall present values ofm∗ later in the paper in table 1.

2. Theoretical model

The key quantity for the calculation of the optical properties of solids is the complex
dielectric function

ε(ω, T ) = ε0(ω, T ) + i
4π

ω
σ(ω, T ). (2)

The conductivity can be expressed in first-order-time-dependent perturbation theory by
(Ashcroft and Mermin 1976)

σ(ω) = e2τ

1 − iωτ

∫
dk

f (E(k))

4π3

[
1

m
− h̄2

m2

∑
n′

( 〈nk|∇|n′k〉〈n′k|∇|nk〉
h̄ω + En(k) − En′(k)

+ 〈nk|∇|n′k〉〈n′k|∇|nk〉
−h̄ω + En(k) − En′(k)

)]
(3)

where for simplification we have omitted the indices and assumed a common scattering
time for all bands. (For the full expression in the absence of collisions refer to Ashcroft
and Mermin (1976, p 252).)

Interpreting the expression in square brackets as a temperature- and frequency-dependent
effective mass, we can define a generalized complex Drude conductivity by

σ(ω, T ) = σD(ω, T )

1 − iωτ
(4)

with the real part given by

σD(ω, T ) = ω2
p(T )τ(T )

4πM(ω, T )
= �2

p(ω, T )τ(T )

4π
(5)

whereωp is the plasma frequency,�p corresponds to the intraband plasma frequency,τ(T )

is the Drude scattering time andM is the ratio of the optical electron mass to the bare
electron mass.

Inserting equation (4) and the first expression in equation (5) into equation (2) and taking
the square of the absolute value of the dielectric function, we find a quadratic equation forM:

M2{|ε|2 − ε2
0} + 2ε0ω

2
pτ 2

1 + ω2τ 2
M − ω4

pτ 2

ω2(1 + ω2τ 2)
= 0 (6)

where we have suppressed the dependence onω andT in this formula and we shall continue
to do so. The physical solution of equation (6) is

M = ε0ω
2
p

ω2[(n2 + k2)2 − ε2
0][1 + (ωτ)−2]

{[
1 + [(n2 + k2)2 − ε2

0](1 + ω2τ 2)

ε2
0ω

2τ 2

]1/2

− 1

}
(7)

where the dielectric function is expressed through the components of the complex refractive
index. Although equation (7) is the main result, we shall give two simpler expressions
which are more suitable for a quick estimate. For photon frequencies well below the
plasma frequency the absolute value of the complex refractive index is usually much larger
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than unity for metals. Thus neglecting unity in the expression in curly brackets we get as
an approximate formula

Mapp = ω2
p

ω2[(n2 + k2)2 − ε2
0]1/2

1

(1 + [ωτ ]−2)1/2
. (7a)

Taking into account the conditionωτ � 1, which is mostly fulfilled in the optical range, and
neglectingε0, equation (7a) reduces to a very simple formula suitable for a quick estimate

Mf ast = ω2
p

ω2(n2 + k2)
. (7b)

3. Discussion

3.1. Caseωt � 1

Equation (7b) holds in this limit. For an evaluation, one needs only the plasma frequency
ωp (see, e.g., Ashcroft and Mermin (1976)) and the tabulated values of the componentsn

andk of the complex refractive index (e.g. from compilations edited by Palik (1985, 1991)).
The other two equations additionally require the Drude scattering timeτ and the dielectric
constantε at ω = 0. Usually the scattering time can be obtained from the second expression
in equation (5). However, this is not allowed here because we have already used this
equation for the derivation ofM. On the other hand, for some metals the Drude plasma
frequency�p is known and, in these cases, one can use the last term of equation (5). A
mass-independent term forτ can also be found within the framework of Drude’s theory
utilizing the real and imaginary parts of the dielectric function:

τ = ε0 − ε1

ωε2
= ε0 − n2 + k2

ω2nk
. (8)

Although for frequencies below the interband transitions both possibilities should lead
to the same value forM, our experience is thatτ obtained from equation (5) leads to
better results especially at these low frequencies. Apparently, the influence of experimental
uncertainties may be reduced by employing an independently measured quantity. There are
still other possibilities, especially suitable for the low-frequency range. Allenet al (1986)
published a simple formula for the calculation of the electron–phonon scattering rate 1/τ

from a solution of the Bloch–Boltzmann equation in lowest order which, however, depends
on the transport electron–phonon coupling-constantλtr . Unfortunately, this quantity is
known only for a few metals. Another simple method would be to evaluate�p by means
of a value forM(ω = 0) determined, for example, by specific heat orTc measurements.
Indeed, this method has been used in the most cases.

Some remarks must be made about the contribution of the interband terms which usually
appear in the discussed range of frequencies. Although we designated equation (4) as
a generalized Drude expression, it contains, owing to equation (3), also the interband
conductivity. In the vicinity of the interband frequencies we shall find, for this reason,
marked deviations in the values ofM(ω, T ) in comparison with the constant value of the
effective mass determined, for example, by specific heat measurements or from the relation
between the electron–phonon coupling parameterλ and the effective massM = 1+λ (Allen
1987). Between and below these frequencies we expect an almost flat behaviour ofM as a
function of ω. Its value may differ from region to region since different parts of the band
structure contribute and a changed effective number of electrons may be involved.
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Although the correct value of the zero-frequency dielectric constantε0 is not very well
known for metals, a few calculated by Sturmet al (1990) indicate values between one and
three. Therefore, one can take the free-electron valueε0 = 1 as long asn2 + k2 is much
larger than unity. A method for the evaluation ofε0 from the optical data, needed when
n2 + k2 becomes of the order of unity, is described in the next section and an example is
given in the appendix.

3.2. Caseωτ � 1

On the one hand this range has the advantage that interband transitions usually do not occur
but on the other hand it needs, despite the smallness of the scattering timeτ of the order of
femtoseconds, frequencies deep in the infrared. Therefore only a few measurements have
been reported. Probably the most extensive compilation of data has been provided by Ordal
et al (1983, 1985, 1987). Unfortunately, the scatter between different measurements is large
and may have been caused by different methods of sample preparation and also by the use
of the Kramers–Kronig relation with an assumed high-frequency behaviour. Figure 3 given
later, which displays the optical mass of gold, may serve as an example for it.

4. Determination of the polarizability ε0

In general, the real partε0(ω) is not a constant and represents the polarization of the rest of
the crystal generated by the core and d electrons ifε′(ω) is considered to be the contribution
from the conduction electrons. Yet it is expected thatε0(ω) has a low dispersion because
the d-electrons and the core electrons are lying sufficiently deeply below the Fermi energy
in most cases. This means that we can putε0(ω) = ε0 = constant forω � Ed and
Ecore. Although ε0(ω) is usually not very much larger than unity, the correct value can be
important since, for example, it enters the sum rule for the oscillator strengths and, here
more significantly, it can become comparable withn2 + k2 at high frequencies.

Describing the contributions from the interband transitions by an oscillator-like model
(see, e.g. Ehrenreich and Phillip (1962) and Hüttner (1994)) the real part of the dielectric
function can be written as

ε′(ω) = ε0(ω) − 4π

ω

(
σDωτ

1 + ω2τ 2
− ω2

pω

4π

∑
n

An[ω2
n + ν2

n − ω2]

[ω2
n + ν2

n − ω2]2 + 4ω2ν2
n

)
. (9)

Here An is the oscillator strength of thenth interband transition andνn is the scattering
frequency belonging to it. Assumingω to be much larger thanνn andωn, equation (9) can
be simplified to

−ε′(ω) = −ε0 + 1

ω2

(
4πσD

τ
+ ω2

p

[
ε0 − 1

M

])
(10)

where we have replaced the sum over the oscillator strengths by thef -sum rule
∑

n An =
ε0 − M−1 (Sturm and Ashcroft 1974). Plotting the experimental values of−ε′(ω) as a
function ofω−2, we obtain−ε0 as the intersection with the−ε′ axis and the terms in large
parentheses as the slope of this function. The latter is not only a byproduct but it can be
used to check whether the conditions for the derivation of equation (10) are met for the
metal investigated.

To this end, one substitutesM by means of equation (5) and finds by cancelling the
σD-terms that the large parentheses in equation (10) are equal to the product of the square
of the plasma frequency timesε0. Since the plasma frequencies are known for most metals,
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one has, apart from the straightness of the plot, a second proof. The square root of the slope
divided by ε0 should correspond to the plasma frequency. Examples are listed in table 2
below.

It is worthwhile noting that equation (10) contains more information than an expression
derived many years ago by Cohen (1958). In his paper he showed thatn2 − k2 could be
fitted by A − B/ω2 in the rangeωτ � 1. Our experience, however, tells us that data for
many metals can be plotted in such a straight line for different intervals especially if these
are fairly short. From the work of Cohen (1958), one can also derive a formula for the
optical mass in the same limit,ωτ � 1. In our notation it is

M = ω2
pτ 2

(ε0 − n2 + k2)(1 + ω2τ 2)
. (11)

In some cases we find good agreement with the values evaluated from equation (7) or (7a)
in this limit (e.g. for Al) and in other cases not (e.g. for Li). Typical for all is a larger
standard deviation in comparison with our results.

5. Results and discussion

In this section we present table 1 with the optical mass calculated by means of equation (7)
together with the frequency range1ω belonging to it. The necessary input parameter plasma
frequencyωp, intraband plasma frequency�p, DC conductivityρdc and polarizabilityε0

are also listed. The intraband plasma frequency has been calculated in most cases using a
literature value for the effective mass as discussed above. We have favoured this method
at the expense of equation (8) because it usually leads to a smaller standard deviation
even if the mean values are similar for most metals. For many systems we use the free-
electron value forε0 because we were not able to calculate the right value from the available
experimental data. Fortunately, the error is negligible for these results ofM(ω) since in all
these casesn2 + k2 is clearly greater than unity. An extrapolation of the optical mass to
zero frequency can be performed if the course ofM(ω) versus frequency justifies this, as is
the case, for example, for Al. Physically this is realized if the complex dielectric function
or the complex refractive index was measured at sufficiently low frequencies, at least below
the essential interband transitions.

For a better comparison, we have tried to collect from the literature in the last column
of table 1 the most accepted values for the effective mass.

Some remarks should be made about the table. The standard deviations given do not
result from strong fluctuations between neighbouringM(ω)-values (these are in all cases
very small), but from the slope of the curve in the investigated frequency interval. The
number of points used in the statistical calculation exceed ten even for very short intervals.

The interpolated values of the effective massM(ω → 0), for the metals in the liquid state
are similar to the results found in the solid state with one remarkable exception, bismuth.
Ashcroft and Mermin (1976) reported for this semimetal the very small valueMeff = 0.047.
The reason for this can be traced back to the relatively complicated Fermi surface caused by
a slight distortion of the crystal structure from the simple cubic monatomic Bravais lattice.
From this point of view the dramatic change in the value of the effective mass during the
phase transition must follow from a rearrangement in the proximity order of the atoms in
the liquid state. Justification for this conclusion is obtained from the known behaviour of
the optical properties of the liquid polyvalent metals. For aluminium (Hüttner 1994), lead
(Hüttner 1995a), and tin (Ḧuttner 1995b) we have revealed that the optical properties in the
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Table 1.

Metal ωp (eV) �p (eV) ε0 ρ (µ� cm) 1ω (eV) M(ω) M(ω → 0) Meff

Ag 8.9 8.9 3.23 1.68 0.04–0.62 0.98± 0.01 0.98 0.99–1.04a

Al 15.0 12.5 1.05 2.65 0.006–1.0 1.46± 0.18 1.53 1.52b

Al, liquid 14.0 13.2 1.0 32.5 1.28–3.0 1.08± 0.10 1.19c

Au 9.0 8.4 2.94 2.26 0.1–1.0 1.17± 0.02 1.14 1.1d

Be 18.4 28.4 1.0 4.0 0.02–0.4 3.24± 2.32 0.84 0.46a

Bi, liquid 14.0 14.0 1.0 131 0.62–2.14 0.99± 0.01 0.99
Ca 8.0 8.0 1.0 3.85 0.75–1.5 1.77± 0.05 1.8e

Co, fcc 10.3 7.9 1.0 6.24 0.09–0.11 11.22± 0.49
Co, hex 10.3 7.9 1.17 6.24 0.07–0.10 7.52± 1.51 1.71f

Cr 13.2 10.1 1.17 12.9 0.04–0.50 7.52± 1.51 1.72f

Cu 10.8 8.8 1.46 1.72 0.02–0.74 1.94± 0.07 1.45± 0.06g

Fe 15.3 11.1 2.24 9.7 0.02–0.07 2.30± 0.72 2.01 1.9h

Hg, liquid 7.7 5.4 2.94 98.4 0.2–1.4 1.00± 0.40 1.69 2.0i

Ir 16.5 13.9 2.05 5.07 0.1–1.0 4.56± 0.43 3.06 1.41h

K 4.3 4.1 1.27 6.15 1.76–2.61 1.10± 0.07 1.07 1.08± 0.02j

Li 7.1 5.4 1.0 10.0 0.15–6.45 1.26± 0.19 1.44 1.45d

Mo 10.5 8.8 3.71 5.33 0.1–0.2 1.96± 0.03 1.83 1.43h–2.00f

Na 5.9 5.6 1.3 4.2 0.55–1.05 1.17± 0.02 1.13 0.98d–1.25k

Nb 8.7 5.8 1.0 16.0 0.12–0.45 1.46± 0.01 1.45 1.86f

Ni 7.7 7.1 1.0 7.04 0.004–0.025 1.69± 0.29 1.7h

Pb 13.0 8.8 1.0 21.0 0.002–0.31 2.80± 0.16 2.70 2.12–2.71l

Pb, liquid 12.7 11.6 1.0 96.0 0.62–3.7 1.00± 0.11 1.24 1.2m

Pd 6.8 5.2 1.0 10.55 0.1–0.14 1.59± 0.14 1.66f

Rh 18.6 13.2 2.1 4.78 0.1–1.0 4.32± 0.92 1.87f

Sn, liquid 13.8 13.8 1.0 48.7 0.62–2.14 0.99± 0.04 1.05 0.98± 0.05o

Ta 10.1 7.4 1.0 12.45 0.01–0.12 1.61± 0.17 1.61 1.65l

Ti 17.8 15.0 1.0 42.7 0.006–1.51 1.22± 0.11 1.39f

V 12.5 8.5 1.0 24.8 0.1–0.32 4.02± 0.91 1.61 1.63f

W 11.7 10.2 1.0 5.33 0.06–0.3 1.56 1.31h

a From Parkinset al (1981).
b From Sturmet al (1990).
c From Hüttner (1994),T = 1550 K.
d From Pines (1963).
e From Ashcroft and Mermin (1976).
f From Perrot and Rassolt (1994).
g From Cohen (1958).
h From Allen (1987).
i From Pines (1963), solid Hg.
j From Palmer and Schnatterly (1971).
k From Ashcroft and Lawrence (1968).
l From Grimvall (1976).
m From Inagakiet al (1982).
o From Petrakianet al (1980).

liquid state can only be explained under the assumption of band structures which are, by
and large, similar in both states.

Inspection of the curves ofM(ω) versusω shows that the optical mass contains more
information than only the bending of the electron energy. Prominent interband transitions
produce structures, similar to the typical behaviour of the frequency-dependent dielectric
function in ionic crystals, caused by the change in the sign of the energy denominator
equation (3). For frequencies above the interband transitions but below the plasma
frequency,M(ω) approaches 1/ε0. Since the metal attains a dielectric behaviour for even
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larger energies,ω > ωp, the optical mass disappears proportionally toω−2 in this range.
Figure 1 displays a plot over four decades of the frequency dependence ofM(ω) for Al.
There are two prominent interband transitions due to parallel bands at aboutω = 0.5 eV
and ω = 1.5 eV. Additional structures below 0.5 eV may result, as suggested by Brust
(1970) and Szmulowicz and Segall (1981), from lower-lying transitions. However, the
flat behaviour at very low energies does not support their assumption that transitions exist
down to zero frequency. More recently, Lee and Chang (1994) deduced from anab-initio
pseudopotential calculation thatω = 0.1 eV for the onset of the interband conductivity,
in fairly good agreement with figure 1. This conclusion is also confirmed by the good
agreement of the value ofM(ω → 0) with the theoretically calculated valueMeff = 1.49
(Perrot and Rasolt 1994).

Figure 1. Optical mass of Al calculated from the data of Smithet al (1985).

Silver, as depicted in figure 2, has no interband transitions below 3.9 eV. This results
in a constant value forM(ω) in this region. The slight difference at low energies between
the data taken from the paper of Winsemiuset al (1976) and those of Bennett and Bennett
(1966) are due to different types of sample preparation. Although being masked by the
semilogarithmic plot,M(ω) possesses a short constant behaviour around 1/ε0 below the
plasma frequency whereε0 equals 3.23 (see table A1 in the appendix). Since gold has a
similar band structure we expect a comparable behaviour as for silver. This conjecture is
confirmed by the measurement of Weaveret al (1981) between 0.1 and 1.0 eV but not by the
data of Ordalet al (1987) at lower energies which were determined from a Kramers–Kronig
analysis (figure 3).

Figure 4 contains a comparison between the values of the optical mass of Li calculated
by means of equation (7) and equation (11) given by Cohen (1958). Although the productωτ

complies with the necessary condition for the validity of equation (11), it always improves
as the frequency increases, i.e. it increases from about 3 for the lowest photon frequency to
230 for the highest photon frequency; the agreement between the results of both approaches
becomes worse asωτ increases. The reason for this is in the different ways in which the
real and imaginary parts of the refractive index enter the equations. For some metals, it
should be mentioned, we find closer agreement between the calculated values. The last
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Figure 2. Optical mass of Ag calculated from the data of Bennett and Bennett (1966) (×) and
Winsemiuset al (1976) (+).

Figure 3. Optical mass of Au calculated from the data of Ordalet al (1987) (×) and Weaver
et al (1981) (◦ ).

two figures are devoted to liquid metals. In figure 5 we present the optical mass of liquid
aluminium calculated from the data of Krishnan and Nordine (1993) taken atT = 1550 K.
Despite the existing scatter between the few values the overall trend is reminiscent of the
behaviour ofM(ω) of solid Al (figure 1). There is an increase inM(ω) just below the
interband transition at about 1.4 eV and a decrease to a fairly flat behaviour above 1.4 eV.
This conclusion is supported by the solid-like shape of the absorption of liquid Al with a
peak atω = 1.4 eV (Krishnan and Nordine 1993) and by theoretical calculations which
predict forT = 1550 K a peak atω = 1.45 eV andM(ω → 0) = 1.19 (Hüttner 1994).

Figure 6 shows the optical mass of liquid Pb atT = 614 K. A linear extrapolation to
zero frequency givesM(0) = 1.24, close toM = 1.2 found from the experimental data of
Inagakiet al (1982) if we invert their effective number of electronsN∗ into Meff .

At this point, it should be emphasized once more that the peak inM(ω) as well as in the
absorption clearly indicates the existence of a band structure in liquid Al which therefore
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Figure 4. Optical mass of Li calculated from the data of Rasigni and Rasigni (1976) (×) and
Callcott and Arakawa (1974) (+); the values (◦ ) are calculated from the expression given by
Cohen (1958), equation (11).

Figure 5. Optical mass of liquid Al calculated from the data of Krishnan and Nordine (1993):
guide for the eye.

cannot be described by a Drude model alone. Being determined by the proximity order
there is no plausible reason why this behaviour should not hold true for any liquid metal.

6. Conclusions

By newly interpreting a standard formula for the frequency-dependent conductivity we have
introduced a generalized Drude conductivity and derived from this an expression for the
frequency-dependent effective mass of the electrons, called the optical mass. Additionally
we give a new expression for the determination of the polarizabilityε0 of metals and their
plasma frequency from measured values of the real part of the dielectric function. We find
good agreement with data given in the literature for both the polarizability and the optical
mass in the zero-frequency limit. For some metals we have obtained for the first time, to
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Figure 6. Optical mass of liquid Pb calculated from the data of Inagakiet al (1982).

the best of our knowledge, estimates for the polarizability. The shape of the optical mass
as a function of frequency shows pronounced peaks which are related to the band structure
of the metal. Moreover, one seems to be able to decide from the calculation of the optical
mass whether a low-frequency cut-off for interband transitions exists or not, provided that
measurements of the refractive index or the dielectric function were made to sufficiently
low frequencies. As an example this is demonstrated for aluminium. Since the method
holds for both the solid and the liquid state we were able to determine also some values
for the optical mass of liquid metals. Stressing this point again, we have to conclude from
the shape of the curves and from the values found that the properties of liquid metals result
from a still existing band structure and that they cannot be described by the free-electron
model.
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Appendix

For aluminium, we demonstrate in this appendix the method for the determination of the
polarizability, ε0. The data for the real part of the dielectric function are taken from Palik
(1985) for photon frequencies between 7 and 15 eV. Plotting the data as a function ofω−2

we get the straight line shown in figure A1.
A linear regression fit yields for the intersection the valueε0 = 1.05 and for the slope

243.7. The plasma frequency is obtained from(243.7/1.05)0.5 as ωp = 15.2 eV. Both
values are in good agreement with values reported in the literature. The polarizability is in
the range between the experimental values of Smithet al (in Palik (1985)),ε0 = 1.03–1.04,
and the theoretical value of Sturmet al (1990), ε0 = 1.08. The plasma frequency was
measured by Raether (1980) asωp = 15.3 eV.
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Table A1.

ε0 ωp (eV) ε0 ωp (eV)
Metal (from equation (10)) (from equation (10)) (from the literature) (from the literature)

Ag 3.23 7.45 8.98a

Al 1.05 15.02 1.08b, 1.04c 15.3d

Au 2.94 5.62 9.02a

Be 0.99 17.31 17.04a

Co 1.17 7.68 10.3e

Cu 1.46 8.45 6.0f 8.5e

Fe 2.24 10.19 15.27a

Hg 2.94 7.26 2.76b 7.5d

Ir 2.05 12.6
K 1.27 3.84 1.25± 0.05g 4.29d

Li 1.00 7.04 1.00h 7.12i

Mo 3.71 10.5 10.1j

Na 1.30 5.27 1.34d 5.95d

Pt 2.84 6.08 6.2k

a From Ashcroft and Mermin (1976).
b From Sturmet al (1990).
c From Smithet al (1985).
d From Raether (1980).
e From Missell and Atkins (1973).
f From Roberts (1960).
g From Palmer and Schnatterly (1971).
h From Rasigni and Rasigni (1977).
i From Kunz (1966).
j From Apholte and Ulmer (1966).
k From Klemperer and Shepperd (1963).

Figure A1. Determination of the polarizability by linear regression fit of the data taken from
the work of Smithet al (1985).

Table A1 contains a compilation of the values forε0 and ωp calculated from
equation (10) together with data from the literature for comparison.



11052 B Hüttner
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